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Abstract

A modified eigenfunction expansion techniques is presented for constructing analytical approximate
solutions of the nonlinear oscillatory equations. This method is valid for both small and large parameters
and large oscillation amplitude. Two examples are given to illustrate the effectiveness of the proposed
method.
r 2005 Elsevier Ltd. All rights reserved.
There are various techniques for constructing analytical approximations to the oscillatory
solutions of second-order nonlinear differential equations [1,2]. But many of them are applied to
weakly nonlinear cases only and are valid for small parameters. To overcome the limitations,
many novel methods have been proposed in recent years. For example, Cheung et al. [3] proposed
a modified Lindstedt–Poincare method and Lim et al. [4] presented a modified Mikens procedure
for certain nonlinear oscillators. Recently, He [5] proposed a perturbation technique and Hu [6]
presented a classical perturbation technique. Both methods are valid for large parameters.
Furthermore, the nonlinear eigenexpansion is also an effective tool in solving the nonlinear
problems. This paper shall study a modified eigenfunction expansion techniques for constructing
see front matter r 2005 Elsevier Ltd. All rights reserved.
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analytical approximate solutions of the nonlinear oscillatory equations. This method is valid for
both small and large parameters and large oscillation amplitudes.
Consider a nonlinear oscillator modeled by the equation

€xþ f ðxÞ ¼ 0; xð0Þ ¼ A; _xð0Þ ¼ 0, (1)

where overdots denotes differentiation with respect to time t and f (x) satisfies the condition

f ð�xÞ ¼ �f ðxÞ. (2)

Let o be the fundamental oscillatory frequency of Eq. (1) and introducing the substitution
y ¼ ot; d=dt ¼ od=dy into Eq. (1), we obtain

o2x00 þ f ðxÞ ¼ 0; xð0Þ ¼ A; x0ð0Þ ¼ 0, (3)

where primes designate differentiation with respect to y. So the solution xðyÞ of Eq. (3) is the
periodic function of variable y with period 2p.
The solution restricted in interval ½p=2; 3p=2� of Eq. (3) is equivalent to the minimization of the

energy functional:

JðxÞ ¼

Z 3p=2

p=2

1

2
o2ðx0Þ2 � F ðxÞ

� �
dy; (4)

where potential

F ðxÞ ¼

Z x

0

f ðxÞdx. (5)

For our discussion, consider the eigenvalue problem

j00j ðyÞ þ ljjjðyÞ ¼ 0; jj

p
2

� �
¼ jj

3p
2

� �
¼ 0 (6)

and its eigenpairs lj;jjðyÞ satisfy

lj ¼ ð2j � 1Þ2; jjðyÞ ¼ cos
ffiffiffiffi
lj

p
y; j ¼ 1; 2; 3; . . . , (7)

where the eigenfunctions fjjg
1
1 form a complete orthogonal system. We denote the finite

dimensional space

Vn ¼ spanfj1; j2; . . . ;jng,

then the nth order approximate periodic solution of Eq. (3) can be decided by the following
Fourier series

xnðyÞ ¼
Xn

j¼1

ajjjðyÞ ¼
Xn

j¼1

aj cos
ffiffiffiffi
lj

p
y 2 Vn, (8)



ARTICLE IN PRESS

Z.G. Xiong et al. / Journal of Sound and Vibration 290 (2006) 1315–1321 1317
which is rewritten as the formula with respect to time t;

xnðtÞ ¼
Xn

j¼1

aj cos
ffiffiffiffi
lj

p
ot. (9)

To determine these coefficients a1; a2; . . . ; an; by inserting Eq. (8) into Eq. (4), we obtain

JðxnÞ ¼
po2

4

Xn

j¼1

lja
2
j �

Z 3p=2

p=2
F
Xn

j¼1

ajjj

 !
dy. (10)

For a minimum to occur, considering J as a function of a1; a2; . . . ; an; it is necessary to have

qJ

qaj

¼ 0 for each i ¼ 1; 2; . . . ; n. (11)

Differentiating Eq. (10) gives

qJðxÞ

qai

¼
1

2
plio2ai �

Z 3p=2

p=2
F
Xn

j¼1

ajjj

 !
ji dy

¼
1

2
plianþ1ai �

Z 3p=2

p=2
F
Xn

j¼1

ajjj

 !
ji dy ¼ 0; i ¼ 1; 2; 3; . . . ; n, ð12Þ

where

anþ1 ¼ o2; o ¼
ffiffiffiffiffiffiffiffiffi
anþ1
p

. (13)

Recalling the initial condition of Eq. (1), we have another equation by Eq. (8)

a1 þ a2 þ a3 þ � � � þ an � A ¼ 0. (14)

Combination of Eqs. (12) and (14) is a nonlinear system of equations with respect to
a1; a2; . . . ; an; anþ1 which can be solved by Newtonian iterative method.
The nonlinear system of Eqs. (12) and (14) is rewritten in the vector form as follows:

FðUÞ ¼ 0, (15)

where

U ¼

a1

a2

� � �

an

anþ1

0
BBBBBB@

1
CCCCCCA
; 0 ¼

0

0

� � �

0

0

0
BBBBBB@

1
CCCCCCA

(16)
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and

FðUÞ ¼

l1anþ1a1 �
p
2

R 3p=2
p=2 f

Pn
j¼1

ajjj

 !
j1 dy

l2anþ1a2 �
p
2

R 3p=2
p=2 f

Pn
j¼1

ajjj

 !
j2 dy

� � �

lnanþ1an �
p
2

R 3p=2
p=2 f

Pn
j¼1

ajjj

 !
jn dy

a1 þ a2 þ a3 þ � � � þ an � A

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

. (17)

The Jacobian matrix of F(U) is

DFðUÞ ¼

l1anþ1 � b11 �b12 � � � �b1n l1a1
�b21 l2anþ1 � b22 � � � �b2n l2a2
� � � � � � � � � � � � � � �

�bn1 �bn2 � � � lnanþ1 � bnn lnan

1 1 � � � 1 0

0
BBBBBB@

1
CCCCCCA
, (18)

where

bij ¼
2

p

Z 3p=2

p=2
f 0
Xn

k¼1

akjkðyÞ

 !
jiðyÞjjðyÞdy. (19)

So the Newtonian iterative technique has the form

UðkÞ ¼ Uðk�1Þ � ½DFðUðk�1ÞÞ��1FðUðk�1ÞÞ; k ¼ 1; 2; 3 . . . . (20)

With n ¼ 1 in Eqs. (12) and (14), we get

a
ð0Þ
1 ¼ A; a

ð0Þ
nþ1 ¼

2

pA

Z 3p=2

p=2
f ðAj1Þj1 dy. (21)

It is known that one has to start the Newton iteration with an initial approximation Uð0Þ

sufficiently close to Uð0Þ; hence an initial approximation

Uð0Þ ¼ ða
ð0Þ
1 ; 0; . . . ; 0; a

ð0Þ
nþ1Þ

T (22)

for an initial value in the following iterative algorithm.
The Newton iterative algorithm to compute the nth order approximate solution of the

nonlinear system FðUÞ ¼ 0 is described by the following algorithm.
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Algorithm 1. To obtain a solution to FðUÞ ¼ 0 given an initial approximation Uð0Þ by Eq. (22):
INPUT: Number n of approximate order; initial approximation Uð0Þ; tolerance TOL; maximum
number of iterations N.
OUTPUT: Approximate solution U or a message that the number of iterations was exceeded.
Step 1: Set k ¼ 1.
Step 2: While kpN do Steps 3–8.

Step 3: Calculate FðUð0ÞÞ by Eq. (17) and DFðUð0ÞÞ by Eq. (18), whose elements can be computed
by composite Gaussian quadrature.

Step 4: Solve the (n+1)-order linear system DFðUð0ÞÞV ¼ �FðUð0ÞÞ:
Step 5: Calculate Vk k ¼ max

0pjpnþ1
VðjÞ
�� ��:

Step 6: If Vk kpTOL; then
set U ¼ Uð0Þ þ V;

OUTPUT(U); (The procedure was successful.)

STOP.
Step 7: Set k ¼ k þ 1.

Step 8: Set Uð0Þ ¼ U: (Update U
(0).)

Step 9: OUTPUT(‘Maximum number of iterations exceeded’);

(The procedure was unsuccessful.)

STOP.
From Algorithm 1 we can obtain approximate Fourier coefficients aj ¼ UðjÞ; j ¼ 1; 2; . . . ; n

and approximate frequency o ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Uðnþ 1Þ

p
:

In order to analyze the eigenfunction expansion approximation, we take the fractional power
equations

€xþ x1=3 ¼ 0; xð0Þ ¼ 1; _xð0Þ ¼ 0 (23)

for example. We can obtain three class of approximate solutions and frequencies of Eq. (23) as
follows:
The third approximate solution to Eq. (23) is

x3 ¼ 1:019542 coso3t� 0:023800 cos 3o3tþ 0:004257 cos 5o3t (24)

with

o3 ¼ 1:070773.

The fifth approximate solution to Eq. (23) is

x5 ¼ 1:020349 cos o5t� 0:023835 cos 3o5tþ 0:000427 cos 5o5t

� 0:000138 cos 7o5tþ 0:000596 cos 9o5t, ð25Þ

with

o5 ¼ 1:070515.
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The 10th approximate solution to Eq. (23) is

x10 ¼ 1:020572 cos o10t� 0:023843 cos 3o10tþ 0:004275 cos 5o10t

� 0:001384 cos 7o10tþ 0:000597 cos 9o10tÞ � 0:000305 cos 11o10t

þ 0:000174 cos 13o10t� 0:000108 cos 15o10tþ 0:000071 cos 17o10t

� 0:000049 cos 19o10t, ð26Þ

with

o10 ¼ 1:070443.

The exact frequency of Eq. (23) is given by [7]

oEX
1=3 ¼

ffiffiffi
p
p

Gð1=4Þ

2
ffiffiffi
6
p

Gð3=4Þ
¼ 1:070451, (27)

then the relative error of the third, fifth and 10th approximate frequency with respect to the exact
frequency are 2.63/10 000, 5.98/100 000 and 7.86/1 000 000, respectively.
We also consider the Duffing equation

€xþ o2
0xþ �x

3 ¼ 0; xð0Þ ¼ A; _xð0Þ ¼ 0 (28)

for example where e is a positive parameter. To compare the present results with exact results, we
take o2

0 ¼ 1. The exact frequency of the periodic motion of the Duffing equation is given by [8]

oe ¼
p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �A2

p
2

Z p=2

0

dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�m sin2y

p
 !�1

; m ¼
�A2

2ð1þ �A2Þ
. (29)
Table 1

Comparison of approximate frequency with the exact frequency for the Duffing equation

�A2 oe o3 (Relative error) o5 (Relative error)

0.00001 1.00000037 1.00000037(0) 1.00000037(0)

0.0001 1.00000374 1.00000374(0) 1.00000374(0)

0.001 1.0000375 1.0000375(2.2204e-16) 1.0000375(2.2204e-16)

0.01 1.0037418 1.0037418(2.2874e-12) 1.0037418 (1.3313e-12)

0.1 1.0367169 1.0367169(1.8864e-9) 1.0367169 (1.0315e-10)

1 1.3177761 1.3177794()2.5226e-6 1.3177761(1.1092e-8)

10 2.8666403 2.8667866(5.1016e-5) 2.8666404 (1.3482e-8)

100 8.5335862 8.5342957(8.3146e-5) 8.5335876(1.5782e-7)

1000 26.810738 26.813088(8.7637e-5) 26.810743(1.8298e-7)

10 000 84.727479 84.734944(8.8103e-5) 84.727494(1.8565e-7)

100 000 267.91425 267.93787(8.8150e-5) 267.91430(1.8592e-7)

1 000 000 847.21369 847.28838(8.8154e-5) 847.21385(1.8594e-7)

10 000 000 2679.1232 2679.3594(8.8155e-5) 2679.1237(1.8594e-7)

100 000 000 8472.1308 8472.8777(8.8155e-5) 8472.1324(1.8595e-7)

1 000 000 000 26791.230 26793.592(8.8155e-5) 26791.235(1.8595e-7)
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For comparison, the exact frequency oe obtained by integrating Eq. (29) and the third-order
approximate frequency o3 and the fifth-order approximate frequency o5 computed by the
modified eigenfunction expansion method (MEEM) are listed in Table 1.
The modified eigenfunction expansion techniques studied in this paper has been used to solve

the Duffing equation. Table 1 indicates that this method can give excellent approximate
frequencies for both small and large parameters and oscillation amplitude. For any values of �A2,
the maximal relative error of the third and the fifth approximate frequencies with respect to the
exact solution is, respectively, less than 1/10 000 and 1/1 000 000 and convergent to zero as
�A2! 0.

The authors would like to thank the reviewers for their suggestions to improve the quality of
the paper. The work was supported in part by the National Natural Science Foundation of China
(1999032804) and the Science Foundation of Hunan Province Educational Department (B30324).
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